• Исследования Менделя

    Грегор Мендель родился в Моравии в 1822 г. В 1843 г. он поступил в монастырь августинцев в Брюние (ныне Брно, Чехословакия), где принял духовный сан. Позже он отправился в Вену, где провел два года, изучая в университете естественную историю и математику, после чего в 1853 г. вернулся в монастырь. Такой выбор предметов, несомненно, оказал существенное влияние на его последующие работы по наследованию признаков у гороха. Будучи в Вене, Мендель заинтересовался процессом гибридизации растений и, в частности, разными типами гибридных потомков и их статистическими соотношениями. Эти проблемы и явились предметом научных исследований Менделя, которые он начал летом 1856 г.

  • Изменчивость

    Изменчивостью называют всю совокупность различий по тому или иному признаку между организмами, принадлежащими к одной и той же природной популяции или виду. Поразительное морфологическое разнообразие особей в пределах любого вида привлекло внимание Дарвина и Уоллеса во время их путешествий. Закономерный, предсказуемый характер передачи таких различий по наследству послужил основой для исследований Менделя. Дарвин установил, что определенные признаки могут развиваться в результате отбора, тогда как Мендель объяснил механизм, обеспечивающий передачу из поколения в поколение признаков, по которым ведется отбор. 

  • Значение мутаций

    Хромосомные и генные мутации оказывают разнообразные воздействия на организм. Во многих случаях эти мутации летальны, так как нарушают развитие; у человека, например, около 20% беременностей заканчиваются естественным выкидышем в сроки до 12 недель, и в половине таких случаев можно обнаружить хромосомные аномалии. В результате некоторых хромосомных мутаций определенные гены могут оказаться вместе, и их общий эффект может привести к появлению какого-либо «благоприятного» признака. Кроме того, сближение некоторых генов друг с другом делает менее вероятным их разделение в результате кроссинговера, а в случае благоприятных генов это создает преимущество. 

    Комментарии: 5
  • Закон расщепления и не только

    Для своих первых экспериментов Мендель выбирал растения двух сортов, четко различавшихся по какому-либо признаку, например по расположению цветков: цветки могут быть распределены по всему стеблю (пазушные) или находиться на конце стебля (верхушечные). Растения, различающиеся по одной паре альтернативных признаков, Мендель выращивал на протяжении ряда поколений. Семена от пазушных цветков всегда давали растения с пазушными цветками, а семена от верхушечных цветковрастения с верхушечными цветками. Таким образом, Мендель убедился, что выбранные им растения размножаются в чистоте (т. е. без расщепления потомства) и пригодны для проведения опытов по гибридизации (экспериментальных скрещиваний). 

  • Закон независимого распределения

    Установив возможность предсказывать результаты скрещиваний по одной паре альтернативных признаков, Мендель перешел к изучению наследования двух пар таких признаков. Скрещивания между особями, различающимися по двум признакам, называют дигибридными.

  • Группы сцепления и хромосомы

    Генетические исследования, проводившиеся в начале нашего века, в основном были направлены на выяснение роли генов в передаче признаков. Работы Моргана с плодовой мушкой Drosophila melanogaster показали, что большинство фенотипических признаков объединено у нее в четыре группы сцепления и признаки каждой группы наследуются совместно. Было замечено, что число групп сцепления соответствует числу пар хромосом.

  • Гигантские хромосомы и гены

    В 1913 г. Стертевант начал свою работу по картированию положения генов в хромосомах дрозофилы, во это было за 21 год до того, как появилась возможность связать различимые в хромосомах структуры с генами. В 1934 г. было замечено, что в клетках слюнных желез дрозофилы хромосомы примерно в 100 раз крупнее, чем в других соматических клетках. По каким-то причинам эти хромосомы многократно удваиваются, но не отделяются друг от друга, до тех пор пока их не наберется несколько тысяч, лежащих бок о бок. Окрасив хромосомы и изучая их с помощью светового микроскопа, можно увидеть, что они состоят из чередующихся светлых и темных поперечных полос.

  • Генные мутации

    Внезапные спонтанные изменения фенотипа, которые нельзя связать с обычными генетическими явлениями или микроскопическими данными о наличии хромосомных аберраций, можно объяснить только изменениями в структуре отдельных генов. Генная, или точечная (поскольку она относится к определенному генному локусу), мутация - результат изменения нуклеотидной последовательности молекулы ДНК в определенном участке хромосомы. Такое изменение последовательности оснований в данном гене воспроизводится при транскрипции в структуре мРНК и приводит к изменению последовательности аминокислот в полипептидной цепи, образующейся в результате трансляции на рибосомах. 

  • Влияние среды

    Главный фактор, детерминирующий любой фенотипический признак, - это генотип. Генотип организма определяется в момент оплодотворения, но степень последующей экспрессии этого генетического потенциала в значительной мере зависит от внешних факторов, воздействующих на организм во время его развития. Так, например, использованный Менделем сорт гороха с длинным стеблем обычно достигал высоты 180 см.

  • Природа генов

    Изучение наследственности уже давно было связано с преставлением о ее корпускулярной природе. В 1866 г. Мендель высказал предположение, что признаки организмов определяются наследуемыми единицами, которые он назвал «элементами». Позднее их стали называть «факторами» и, наконец, генами; было показано, что гены находятся в хромосомах, с которыми они и передаются от одного поколения к другому.

  • Генетика

    Генетика по праву может считаться одной из самых важных областей биологии. На протяжении тысячелетий человек пользовался генетическими методами для улучшения домашних животных и возделываемых растений, не имея представления о механизмах, лежащих в основе этих методов. Судя по разнообразным археологическим данным, уже 6000 лет назад люди понимали, что некоторые физические признаки могут передаваться от одного поколения другому. Отбирая определенные организмы из природных популяций и скрещивая их между собой, человек создавал улучшенные сорта растений и породы животных, обладавшие нужными ему свойствами.

  • Генетика, ДНК, клетка

    Вы узнаете о том, что такое генетика, что такое ДНК, как устроена клетка, что такое клеточное ядро и сколько в клетке ядрышек.

    Генетика - это наука о наследственности и изменчивости организмов, а также биологические механизмы, их обеспечивающие. Термин ГЕНЕТИКА предложен к использованию в 1906 г. английским биологом Бейтсоном (W. Bateson). Она может считаться одной из самых важных областей не только биологии, но науки в целом, оказывающей существенное влияние на жизнь и развитие человечества.

  • Электроны и электронная оптика

    Подлинная революция в микроскопии произошла в 20-х годах нашего века, когда возникла идея использовать в ней потоки частиц - электронов. На основе этой идеи возникла и быстро развилась новая область науки электронная микроскопия, позволившая осуществить наиболее глубокий прорыв в области видения и изучения сверхмалых объектов.

  • Электронограф

    Близким «родственником» электронного микроскопа является электронограф - прибор, использующий явление дифракции электронов, той самой дифракции, которая в своё время подтвердила наличие волновых свойств у электронов и ставит в наши дни предел разрешения в электронном микроскопе.

    В случае электронов объектами, в которых может происходить дифракция на периодической структуре (аналогичной объёмной дифракционной решётке в оптике), служат кристаллические структуры. Известно, что в кристаллах атомы расположены в строгом геометрическом порядке на расстояниях порядка единиц ангстрем.

  • Путь микроскопии

    Когда на пороге XVII столетия был создан первый микроскоп, вряд ли кто-либо (и даже его изобретатель) мог представить будущие успехи и многочисленные области применения микроскопии. Оглядываясь назад, мы убеждаемся, что это изобретение знаменовало собой нечто большее, чем создание нового устройства: впервые человек получил возможность увидеть ранее невидимое.

  • Предел микроскопии

    Изображение, получаемое при помощи любой оптической системы, есть результат интерференции различных частей световой волны, прошедшей через эту систему.

    В частности, известно, что ограничение световой волны входным зрачком системы (краями линз, зеркал и диафрагм, составляющих оптическую систему) и связанное с ним явление дифракции приводит к тому, что светящаяся точка будет изображена в виде дифракционного кружка.

  • Отражательный электронный микроскоп

    В отражательном электронном микроскопе изображение создается с помощью электронов, отраженных (рассеянных) поверхностным слоем объекта. Образование изображения в нем обусловлено различием рассеяния электронов в разных точках объекта в зависимости от материала и микрорельефа. Обычно образцы получаются под малым углом (приблизительно несколько градусов) к поверхности. Практически на электронных микроскопах такого типа достигнуто разрешение порядка 100 ангстрем.

  • Монохроматичность

    Степень монохроматичности и когерентности является важной характеристикой волн любой природы (электромагнитных, звуковых и др.). Монохроматические колебания это колебания, состоящие из синусоидальных волн одной определённой частоты. Когда мы представляем колебания в виде простой синусоиды соответственно с постоянными амплитудой, частотой и фазой, то это является определённой идеализацией, так как, строго говоря, в природе не существует колебаний и волн, абсолютно точно описываемых синусоидой. Однако, как показали исследования, реальные колебания и волны могут с большей или меньшей степенью точности приближаться к идеальной синусоиде (обладать большей или меньшей степенью монохроматичности).

  • Микрорентгеноспектральный анализатор

    Важной разновидностью электронных микроскопов растрового типа является микрорентгеноспектральный анализатор. Прибор основан на возбуждении так называемого характеристического рентгеновского излучения атомов малого участка поверхности - образца с помощью тонкого высокоскоростного электронного зонда.

    Электронный зонд с помощью системы развертки обегает исследуемую поверхность. При торможении электронов на поверхности возникает наряду с так называемым тормозным излучением характеристическое рентгеновское излучение, свойства которого существенно определяются строением электронных оболочек в атомах вещества.

  • Закономерности

    Основные закономерности обусловлены волновой природой света и ограничивают возможность разрешения источников с помощью любых оптических систем, в том числе в астрономии и микроскопии.

    Как известно, с помощью микроскопов часто рассматривают объекты, освещаемые посторонним источником; это значит, что отдельные точки объекта рассеивают световые волны, исходящие из одной и той же точки источника, и свет, идущий от разных точек объекта, оказывается поэтому в значительной мере когерентным. Определение разрешающей способности микроскопа в случае когерентного освещения, проводимое по методу Аббе, приводит к аналогичному результату (некоторое различие в численных коэффициентах несущественно, поскольку вообще понятие разрешающей способности несколько условно).