Строение клетки

Начиная знакомство с животным миром, необходимо сначала в самых общих чертах остановиться на строении и отправлениях клетки.

Клетка представляет собой структурную и функциональную единицу, лежащую в основе строения и развития организмов х. В многоклеточном организме форма строения клеток в соответствии с выполняемыми ими функциями очень различна. Однако основные черты их организации свойственны как простейшим, так и многоклеточным животным и растениям.

Каждая клетка состоит из цитоплазмы и ядра. Оба эти компонента представляют собой единую и неделимую структурную и функциональную систему, части которой не могут существовать раздельно. Цитоплазму часто обозначают другим термином —п ротоплазмой. Однако многие ученые в слово «протоплазма» вкладывают иное содержание, обозначая им все живые части клетки, в том числе и ядро. Ввиду некоторой неопределенности термина «протоплазма» в дальнейшем изложении д:ы не будем им пользоваться.

Цитология

Наука, изучающая строение и отправление клеток, называется цитологией.

За последнее десятилетие она достигла больших успехов, что в значительной мере связано с разработкой новых методов исследования клетки.

Основным «орудием» цитологии служит микроскоп, позволяющий изучать строение клетки при увеличении в 2400—2500 раз. Клетки изучают в живом виде, а также после специальной обработки. Последняя сводится к двум основным этапам.

Сначала клетки фиксируют, т. е. убивают их быстродействующими ядовитыми для клеток веществами, не разрушающими их структуры. Вторым этапом является окраска препарата. Она основана на том, что разные части клетки с разной степенью интенсивности воспринимают некоторые красители. Благодаря этому удается отчетливо выявить различные структурные компоненты клетки, которые без окраски благодаря сходному коэффициенту преломления не видны. Очень часто применяют метод изготовления срезов. Для этого ткани или отдельные клетки после специальной обработки заключают в твердую среду (парафин, целлоидин), после чего при помощи особого прибора — микротома, снабженного острой бритвой, раскладывают на тонкие срезы толщиной от 3 микрон (микрон = 0,001 мм). 

1 Не все организмы имеют клеточное строение.

Клеточная организация явилась результатом длительной эволюции, которой предшествовали неклеточные (доклеточные) формы жизни. Фиксированные и окрашенные препараты перед изучением заключают в среду с высоким коэффициентом преломления (глицерин, канадский бальзам и др.). Благодаря этому они становятся прозрачными, что облегчает исследование препарата.

В современной цитологии разработан ряд новых методов и приемов, применение которых чрезвычайно углубило знания о строении и физиологии клетки.

Очень большое значение для изучения клетки имеет применение биохимических и цитохимических методов.В настоящее время мы можем не только изучать строение клетки, но и определять ее химический состав и изменения его в процессе жизнедеятельности клетки. Многие из этих методов основаны на применении цветных реакций, позволяющих различать определенные химические вещества или группы веществ. Изучение распределения разных по своему химическому составу веществ в клетке путем цветных реакций представляет собой цитохимический метод. Он имеет большое значение для исследования обмена веществ и других сторон физиологии клетки.

Микроскоп и клетка

В современной цитологии широко применяют ультрафиолетовую микроскопию. Ультрафиолетовые лучи невидимы для человеческого глаза, но воспринимаются фотографической пластинкой. Некоторые играющие особо важную роль в жизни клетки органические вещества (нуклеиновые кислоты) избирательно поглощают ультрафиолетовые лучи. Поэтому по снимкам, изготовленным в ультрафиолетовых лучах, можно судить о распределении нуклеиновых веществ в клетке.

Разработан ряд тонких методов, позволяющих изучать проникновение разных веществ в клетку из окружающей среды.

Для этого, в частности, применяют прижизненные (витальные) красители. Это такие красящие вещества (например, нейтральный красный), которые проникают в клетку, не убивая ее. Наблюдая за живой витально окрашенной клеткой, можно судить о путях проникновения и накопления веществ в клетке.

Особенно большую роль в развитии цитологии, а также в изучении тонкого строения простейших сыграла электронная микроскопия.

Электронный микроскоп основан на ином принципе, чем световой оптический микроскоп. Объект изучают в пучке быстро летящих электронов. Длина волны электронных лучей во много тысяч раз меньше длины волны световых лучей. Это позволяет получить значительно большую разрешающую способность, т. е. гораздо большее увеличение, чем в световом микроскопе. Пучок электронов проходит сквозь изучаемый объект и затем падает на флуоресцирующий экран, на котором и проецируется изображение объекта. Чтобы объект был проницаемым для электронного пучка, он должен быть очень тонким. Обычные микротомные срезы толщиной в 3—5 мк для этого совершенно непригодны. Они полностью поглотят пучок электронов. Были созданы особые приборы — ультрамикротомы, которые позволяют получать срезы ничтожной толщины, порядка 100—300 ангстрем (ангстрем — единица длины, равная одной десятитысячной микрона). Различия в поглощении электронов разными частями клетки настолько малы, что без специальной обработки на экране электронного микроскопа они не могут быть обнаружены. Поэтому изучаемые объекты предварительно обрабатываются веществами, непроницаемыми или труднопроницаемыми для электронов. Таким веществом является четырехокись осмия (Os04). Она в различной степени поглощается разными частями клетки, которые благодаря этому по-разному задерживают электроны.

Применяя электронный микроскоп, можно получить увеличения порядка 100000.

Электронная микроскопия открывает новые перспективы в изучении организации клетки.