ГлавнаяХимияПластики и полимеры

Пластики и полимеры

Природные полимеры распространены достаточно широко, это, например, белки и целлюлозы. Полимеры представляют собой соединения с длинными молекулами, построенными как последовательность повторяющихся идентичных химических единиц, связанных в цепи ковалентными связями. Возможно, основные сведения о способах синтеза полимеров химии приобрели, пытаясь получить синтетический аналог натурального каучука» Сегодня химики создали так много полимеров столь разнообразного целевого назначения, что уже трудно представить себе современное общество лишенным возможности пользоваться полимерными материалами» Ярким свидетельством важности полимеров является 100-кратный рост их производства в США за последствие 40 лет. В объемных показателях их производится больше, чем стали, выпуск которой за тот же период увеличился лишь вдвое. Совершенно ясно, какие экономические выводы следуют из этого сравнения.

Химия полимеров определяется многими параметрами. Контроль над ними - искусство, которым химики овладевают все в большей степени и большей степени. Чрезвычайно важны тщательный подбор условий реакции (температуры, давления, инициатора полимеризации, концентрации, растворителя, эмульгатора и т.д.) и структур реагентов (мономеров), которые могут существенно влиять на целый ряд различных свойств полимерных продуктов. Мы можем предопределить среднюю длину цепи (молекулярную массу), степень ее разветвленности, число поперечных связей между полимерными цепями и физические и химические свойства конечного продукта (путем ввода специально подобранных функциональных групп).

Целенаправленно манипулируя этими факторами, химик может конструировать полимеры с заданными свойствами, такими как пластичность или жесткость, прочность при растяжении, гибкость или эластичность, термопластичность или термическая устойчивость, химическая инертность или растворимость, притягивание или отталкивание растворителей (смачиваемость или несмачиваемость для воды, чувствительность к свету (фотодеструкция) и микроорганизмам (биодеградация) и способность изменять вязкость при течении (тиксотропия). Именно этим объясняется продолжающийся рост производства пластиков и увеличение их присутствия в предметах, которыми мы пользуемся , которые носим, на которых сидим, в которых ездим, которые, как или иначе, входят в наш обиход.

Полиэтилен: химическая цепочка из многих идентичных фрагментов

НОВЫЕ ОПТИЧЕСКИЕ МАТЕРИАЛЫ

Оптические волокна

Подобно тому, как в современной электронике транзисторы вытеснили электронные лампы, тончайшие кварцевые нити вытесняют медную проволоку, традиционно использовавшуюся для изготовления кабелей. Импульс электронов, посылаемый по медной проволоке, заменил световой импульс, посылаемый по светопроводящим волокнам. Решающую роль в практическом осуществлении этого нового подхода сыграло то обстоятельство, что технологи сумели разработать эффективный способ получения высокопрозрачных кварцевых нитей путем химической конденсации пара (ХКП). Суть его состоит в следующем: соединение, диоксида, кремния, который на внутренней поверхности стеклянной трубки. Трубку с нанесенным слоем диоксида кремния размягчают и вытягивают нить. Толщина получаемой таким образом кварцевой нити со стеклянным покрытием составляет примерно одну десятую толщины человеческого волоса. ХКП позволила менее чем за десятилетие в 100 раз сократить потери света в волокнах. Новый класс материалов, фторидные стекла, возможно позволит получить еще более прозрачные нити. В отличие от обычных стекол, представляющих собой смеси оксидов металлов, фторидные стекла – это смеси фторидов металлов. Многие практические проблемы, связанные с использованием таких стекол, еще не решены, но в принципе, используя фторидные стекла, можно было бы передавать оптические сигналы через Тихий океан без помощи релейных станций.

Оптические переключатели

Химия сыграла весомую роль не только в разработке новых материалов, таких как оптические волокна, и процессов их получения, но и в создании материалов для оптических устройств, предназначенных для переключения, усиления и хранения оптических сигналов. Эта область открывает замечательные возможности ведь оптический переключатель способен срабатывать за одну миллионную миллионной доли секунды (за пикосекунду). В современных оптических устройствах используются ниобат лития и арсенид галлия алюминия, продукты электронной индустрии. Однако органические стереоизомеры, жидкие кристаллы и полиацетилены могут давать оптические эффекты, превосходящие возможности ниобата лития. Эта область исследований обещает много новых открытий и технологических разработок.

НОВЫЕ ПРОВОДНИКИ ЭЛЕКТРИЧЕСТВА

Полупроводники

Пятидесятые годы ознаменовались блестящими достижениями в физике твердого тела, заложившими фундаментглубокого понимания природы чистых полупроводниковых материалов. Поскольку в процессе проведения этих исследований выяснилось, что необходимы монокристаллы элементных кремния и германия с содержанием примесей не более одной части на 100 миллионов, химикам также пришлось заняться этими проблемами. В результате полупроводниковые свойства были обнаружены у бинарных соединений элементов III и V групп Периодической системы, например у соединения галлия и мышьяка. Одно из типичных соединений III-V-антимонид индия, смешанный полупроводник, который уже 15 лет используется как один из самых чувствительных детекторов в ближней инфракрасной области. Несколько позднее в центре внимания оказались монокристаллы арсенида галлия различной толщины с различным содержанием примесей. Материалы этого рода служат для изготовления лазеров и лазерных дисплейных устройств, используемых в длинноволновых оптических линиях связи.

По мере расширения круга материалов, применяемых в полупроводниковых технологиях, в эту работу вовлекалось все больше и больше химиков. Скачок активности химиков совпал с поразительным открытием полупроводниковых свойств аморфного (некристаллического) кремния. Поскольку общепринятая и весьма эффективная теория полупроводникового поведения, вошедшая во все учебники, ориентирована на свойства абсолютно упорядоченных твердых тел, в рамках этой теории нельзя было ни предсказать существование аморфных полупроводников, ни удовлетворительно описать их.

Для объяснения этой загадки пользуются химическим языком и хищническими концепциями (например, говорят о «блуждающих связях» в аморфном кремнии).

Мы находимся на пороге новой эры в науке о твердом теле: физики продолжают развивать успехи, достигнутые ими в изучении свойств новых твердотелых материалов, роль же химиков существенно возрастает. Дело в том, что в настоящее время открыты совершенно новые группы твердых тел, обладающих электрической проводимостью, свойства которых в значительной степени определяются способностью химиков контролировать локальные структуры и молекулярные свойства. Как мы увидим далее, некоторые из этих материалов относятся к классу неорганических, другие – к классу органических соединений.

МАТЕРИАЛЫ ДЛЯ ЭКСТРЕМАЛЬНЫХ УСЛОВИЙ

Развитие многих современных технологий сдерживается из-за отсутствия подходящих конструкционных материалов. Реактивные и автомобильные двигатели, ядерные реакторы, магнитогидродинамические генераторы и теплозащитные щиты космических кораблей – примеры из настоящего. В будущем проблема материалов возникнет в связи с реализацией управляемого термоядерного синтеза. Мощность и эффективность любого теплового двигателя – парового, внутреннего сгорания, реактивного – с повышением рабочей температуры возрастает. Поэтому работа над получением новых материалов, которые позволили бы повысить рабочие температуры, имеет большое экономическое значение.

Новые методы синтеза

Существует ряд перспективных методов приготовления термостойких материалов. Это имплантация ионов, пламенный синтез, плавление в отсутствие гравитации, напыление на кристаллические поверхности с помощью молекулярных пучков (эпитаксия) и химическая конденсация из пара под действием тлеющего разряда (плазма). Относительно недавно был предложен необычный метод, базирующийся на использовании лазерной техники. Луч мощного импульсного лазера, сфокусированный на твердой поверхности, способен кратковременно (менее чем за 100 нс) создавать исключительно высокие локальные температуры, вплоть до 10000 К. В месте фокусировки такого короткого высокотемпературного импульса, происходят значительные химические и физические изменения, например, модификация поверхности, образование поверхностных сплавов, а в условиях конденсации пара он может инициировать специфические химические реакции. Все упомянутые методы приводят к термодинамически нестабильным фазам с особыми «замороженными» свойствами. (Примером подобной фазы служит алмаз) Этот драгоценный камень ценится за «игру» света и исключительную твердость, но в нормальных условиях он термодинамически неустойчив относительно графита.